
J. Fluid Mech. (1999), vol. 381, pp. 337–355. Printed in the United Kingdom

c© 1999 Cambridge University Press

337

Time-dependent response of a floating flexible
plate to an impulsively started steadily

moving load

By W. S. N U G R O H O1†, K. W A N G2, R. J. H O S K I N G2

AND F. M I L I N A Z Z O1

1Department of Mathematics and Statistics, University of Victoria, Victoria, B.C.,
Canada V8W 3P4

2Department of Mathematics and Statistics, James Cook University of North Queensland,
Townsville, Q 4811, Australia

(Received 20 August 1997 and in revised form 23 September 1998)

The time-dependent response of a floating flexible plate to an impulsively started
steadily moving load defines the time taken to approach a steady-state deflection
due to the load, or indeed whether such a steady state is achieved at all. The
asymptotic analysis for large time reported here, for both a concentrated point load
and a uniformly distributed circular load, confirms that a steady-state deflection is
achieved at both subcritical and supercritical load speeds. This analysis also predicts
a logarithmically growing response near the critical speed corresponding to the
minimum phase speed of the hybrid waves generated, but an eventual steady-state
response when the load speed moves at the shallow water wave speed. These results
are supported by numerical computation.

1. Introduction
Theory for the deflection of a continuously supported beam or plate due to a

moving load is applicable to various transport systems. The beam or plate may
represent a rail or road surface, an airport runway or a floating ice sheet in a
cold region. The moving load might be a conventional vehicle, a landing aero-
plane or a hovercraft. Moving loads on ice plates is the subject of a recent mono-
graph (Squire et al. 1996), where it is emphasized that the deflection can be much
greater when the load is moving than when it is stationary. Kerr (1983) pointed
out that the minimum phase speed cmin of hybrid waves, largely determined by
the flexural rigidity of the plate and the properties of the underlying foundation,
coincided with a classical critical speed. Davys, Hosking & Sneyd (1985) subse-
quently noted that wave energy may accumulate beneath a load travelling at or
near speeds coincident with both the group speed and the phase speed of gener-
ated waves. They also showed inter alia that gravity-dominated trailing waves may
propagate away behind a localized load moving over a floating ice plate only if
V cos β < (gH)1/2, where V is the load speed and β is the angle that the normal
to any wave crest makes with the direction in which the load is moving. The water
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wave speed (gH)1/2, where g is the gravitational acceleration and H is the depth
of the underlying water, is thus another critical speed candidate. Leading shorter
flexural waves correspond to wavenumbers where the group speed exceeds the phase
speed, and longer gravity-dominated waves to wavenumbers where the reverse is the
case.

In an analysis of the response of a thin floating elastic plate to a steadily moving
concentrated line load, on the implicit assumption that a steady state exists, Kheysin
(1967) originally identified two critical speeds where the deflection is theoretically
infinite. Nevel (1970) subsequently analysed the deflection due to a steadily moving
load uniformly distributed over a circular area, and inter alia noted that his integral
for the deflection directly beneath the load centre is unbounded at a particular load
speed, so it emerged that such singularities were not due to load concentration or
dimensionality.

Kheysin (1971) recognized that a time-dependent analysis might help explain the
singular deflection at critical speed. Thus he set out to examine whether or not the
deflection, evidently so dependent on the load speed, actually approaches a steady
state – and if it does, to ascertain the time taken for transients to die out. He found
that an impulsively started concentrated line load produces a deflection eventually
growing in time as t1/2 when V = cmin, consistent with continuous energy accumulation
under the load at that speed (Davys et al. 1985). Schulkes & Sneyd (1988) provided
a much more complete asymptotic analysis for an impulsively started concentrated
line load, confirming this O(t1/2) growth when V = cmin and showing inter alia that
the deflection also grows as t1/3 when V = (gH)1/2 (as t→∞).

Steady wave patterns, originally derived by Davys et al. (1985) for a uniformly
moving point load, have largely been reproduced for uniform rectangular load distri-
butions by Milinazzo, Shinbrot & Evans (1995), with some small variations depending
on load aspect ratio. However, they noted that whereas no bounded steady state is
possible when V = cmin (in the absence of dissipation), their steady-state solution
when V = (gH)1/2 appears bounded. Squire et al. (1996) nevertheless chose to refer
to (gH)1/2 as ‘critical’, pending the development of further relevant time-dependent
analysis.

In this paper, we discuss the response of a floating flexible plate to an impulsively
started concentrated point load and an impulsively started load uniformly distributed
over a circular area, to investigate in particular whether the time-dependent deflection
at various load speeds V differs from that found by Schulkes & Sneyd (1988) for the
one-dimensional case of a line load. The mathematical model we use is outlined in
detail in § 2.

2. Mathematical model
We consider a thin elastic homogeneous plate of infinite extent, with thickness h

and density ρ′ floating on water of uniform depth H . The upper undisturbed water
surface is at z = 0 and the seafloor is at z = −H , where the (x, y)-plane coincides
with the thin plate. The water density is denoted by ρ. If f(x, y, t) denotes the moving
load on the plate, then the linearized equation for the vertical plate deflection η(x, y, t)
is (see for example Davys et al. 1985; Schulkes & Sneyd 1988)

D

(
∂2

∂x2
+

∂2

∂y2

)2

η+ρ′h
∂2η

∂t2
= −ρ(φt)y=0−ρgη− f(x, y, t) for−∞ < x, y < ∞, (2.1)
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where the gravitational acceleration g is in the negative y-direction and φ(x, y, z, t)
represents the velocity potential for irrotational and incompressible flow in the water.
The velocity potential thus satisfies the Laplace equation

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0, −H < z < 0, (2.2)

subject to the boundary conditions (∂φ/∂y)(x, y,−H, t) = 0 and the kinematic (non-
cavitation) condition (∂φ/∂z)(x, y, 0, t) = (∂η/∂t)|z=0. The flexural rigidity coefficient
for a thin elastic plate is commonly given in terms of Young’s modulus E and
Poisson’s ratio ν as

D =
Eh3

12(1− ν2)

although corrections can be made, for example to account theoretically for plate
inhomogeneity (Kerr & Palmer 1972; Squire et al. 1996).

3. Time-dependent deflection due to a point load
By considering a line load, Schulkes & Sneyd (1988) reduced the problem to one

spatial dimension. In this section, we consider a moving concentrated point load, and
then a uniformly distributed circular load in the next section, to discuss the time
development of disturbances that may propagate in directions other than in the line
of motion of the load.

Taking an impulsively started point load subsequently travelling with uniform
speed V in the positive x-direction, we write f(x, y, t) = P0δ(x − Vt)δ(y)U(t) where
P0 is the load pressure per unit area, δ is the Dirac delta function and

U(t) =

{
0, t 6 0

1, t > 0

is the Heaviside unit step function. Then taking the Fourier transform of (2.1) and
(2.2) in x and y denoted by the hat superscript, we obtain

Dk4η̂ + ρgη̂ + ρ′hη̂tt + ρφ̂t(k, 0, t) = −P0

2π
e−ik1Vt (3.1)

for t > 0, with

φ̂zz − k2φ̂ = 0, φ̂z(k,−H, t) = 0, φ̂z(k, 0, t) = η̂t, (3.2)

where k = (k2
1 + k2

2)1/2 is the wavenumber with Cartesian components (k1, k2), and the
t and z subscripts indicate partial differentiation. Solving (3.2), substituting the result
into (3.1) and using the initial conditions (η̂)t=0 = 0, (η̂t)t=0 = 0, we obtain(

ρ′h+
ρ

k
coth (kH)

)
η̂tt + Dk4η̂ + ρgη̂ = −P0

2π
e−ik1Vt. (3.3)

Given that we are interested in wavelengths much larger than the plate thickness h,
we neglect the plate acceleration term with coefficient ρ′h in (3.3). Upon solving the
differential equation (3.3) we thus obtain

η̂(k, t) = − P0

4πρ

e−ik1Vt

c(k)

[
(1− e−iΨ1t)

Ψ1

+
(1− eiΨ2t)

Ψ2

]
tanh (kH), (3.4)
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Figure 1. Dispersion relation; the parameters are D = 2.5× 105, ν = 1
3
, h = 0.175 m,

H = 6.8 m, g = 9.8 m s−2.

where Ψ1 = kc − k1V and Ψ2 = kc + k1V are suitable phase functions. The phase
speed c = ω/k, where ω is the angular frequency, is given by the dispersion relation
(see also figure 1)

c2 =

(
Dk4

ρ
+ g

)
tanh (kH)

k
. (3.5)

It is convenient to introduce the coordinate X = x−Vt corresponding to a reference
frame moving with the load, so the expression for the plate deflection obtained by
the inverse Fourier transform is

η(X, y, t) = − P0

8π2ρ

∫ ∞
−∞

∫ ∞
−∞

tanh (kH)

c(k)
ei(k1X+k2y)

×
[

(1− e−iΨ1t)

Ψ1

+
(1− eiΨ2t)

Ψ2

]
dk1dk2. (3.6)

The phase speed c(k) is positive for real k and the zeros of the denominators Ψ1,
Ψ2 are also zeros of the respective numerators, so this expression is analytic in
some neighbourhood of the real axis in the (k1k2)-plane. Some direct numerical
computation using (3.6) is described later. To get asymptotic expansions for large
time, we need only consider the term involving Ψ1, since the other phase function Ψ2
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is monotonically increasing with k. We prefer to use an equivalent polar form for this
purpose, however.

Using the polar coordinate transformation X = r cos ξ, y = r sin ξ, k1 = k cos θ,
k2 = k sin θ, we re-express (3.6) as

η(r, ξ, t) = − P0

4π2ρ
Re

(∫ ∞
0

∫ π/2

−π/2
tanh(kH)

c(k)
eikrcos(θ−ξ)

×
{

1− e−ik(c−V cos θ)t

c− V cos θ
+

1− eik(c+V cosθ)t

c+ V cos θ

}
dθdk

)
(3.7)

where Re(z) denotes the real part of z. An alternative expression for the deflection in
these polar coordinates is

η(r, ξ, t) = − P0

4π2ρ

∫ ∞
0

∫ π/2

−π/2
k tanh(kH)

c(k)

∫ t

0

{sin [kr cos (θ − ξ) + k(c+ V cos θ)s]

−sin[kr cos(θ − ξ)− k(c− V cos θ)s]}dsdθdk

= − P0

2πρ

∫ ∞
0

k tanh (kH)

c(k)

∫ t

0

J0(kA) sin (kcs)dsdk (3.8)

where A = [(r cos ξ + Vs)2 + r2 sin2 ξ]1/2. Both (3.7) and (3.8) define the deflection at
any field point (r, ξ) in the plane of the flexible plate. For the ultimate steady state,
(3.8) can be used to show that the maximum deflection occurs at the concentrated
point load for load speeds V < c(k) (i.e. at r = 0 where A = Vs), as one might have
anticipated in the absence of visco-elasticity (Takizawa 1988; Squire et al. 1996).

4. Local deflection due to a distributed circular load
Let us now generalize the idea of Nevel (1970), to obtain the time-dependent

deflection under the centre of a load uniformly distributed over a circular area of
radius R. Thus we introduce

η(t) =

∫ R

0

∫ 2π

0

η(r, ξ, t)

πR2
rdrdξ,

so from (3.8) we have

η(t) = − P0

πρR

∫ ∞
0

tanh(kH)J1(kR)

c(k)

∫ t

0

J0(kVs)sin(kcs)dsdk. (4.1)

We note that the Bessel function J1(kR) in this result characterizes the distributed
load, in comparison with (3.8) for the concentrated point load.

The eventual evolved solution corresponds to setting t = ∞ in (4.1). Thus the fully
evolved deflection under the centre of the circular load is

η∞ = − P0

πρR

∫ ∞
0

tanh(kH)J1(kR)

c(k)

∫ ∞
0

J0(kVs)sin(kcs)dsdk

= − P0

πρR

∫ ∞
0

tanh(kH)J1(kR)

c(k)

U(c− V )

[k2(c2 − V 2)]1/2
dk;

and on introducing a = kc2/[g tanh(kH)] and b = kV 2/[g tanh(kH)] we obtain the
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integral form derived by Nevel (1970):

η∞ = − P0

πρR

∫ ∞
0

J1(kR)

R

U(a− b)
[a(a− b)]1/2

dk

= − P0

πρg`2

∫ ∞
0

J1(ξR/`)

R/`

U(a− b)
[a(a− b)]1/2

dξ, (4.2)

where U is the Heaviside unit step function introduced earlier and ξ = kl is the
non-dimensional wavenumber (where l = (D/ρg)1/4 is a characteristic length). Non-
zero contributions to the integral correspond to wavenumbers k where V < c(k), or
equivalently a > b. Nevel noted that his integral in (4.2) is unbounded when a = b
and da/dξ = db/dξ, which in the deep water limit where tanh(kH) ≈ 1 corresponds
to

V ≈ 2

(
Dg3

27ρ

)1/2

,

the critical speed originally identified by Kheysin (1967) that is equivalent to cmin.
We could numerically evaluate the deflection given by (4.1) at various times t,

to examine the evolution of the response for any given load speed V , including this
critical speed. However, we are content to evaluate the integral in (4.1) asymptotically
(as t→∞) in § 6, since the results obtained generally confirm the asymptotic analysis
for the concentrated point load given in the next section.

5. Large-time asymptotic analysis for the point load

Rather than asymptotically estimating the deflection η for large t directly, we can
often simplify our calculation by first differentiating with respect to t and estimating
ηt instead, since the integrand is a continuous function of k and θ. We use the
method of stationary phase (Nayfeh 1981; Lighthill 1978). Thus taking the derivative
of (3.7) with respect to t, and retaining only the component which can contribute
asymptotically owing to points of stationary phase, we consider

ηt(r, ξ, t) =
P0

4π2ρ
Im

(∫ ∞
0

∫ π/2

−π/2
C(r, θ − ξ; k)

c(k)
e−iΨtdθdk

)
(5.1)

where Ψ = k(c− V cos θ) and Im(z) denotes the imaginary part of z and

C(r, ξ; k) =
k tanh(kH)eikr cos ξ

c(k)
.

We can then integrate our asymptotic results for ηt, to get asymptotic estimates (as
t→∞) for the deflection η (Olver 1974).

Major contributions to the integral come from the neighbourhood of points of
stationary phase. The stationary points of the double integral correspond to the (k, θ)
pairs satisfying the two equations Ψk(k, θ) = cg−V cos θ = 0 and Ψθ(k, θ) = kV sin θ =
0 (with subscripts k and θ indicating partial differentiation), where cg = dω/dk denotes
the group speed (Jones & Kline 1958; Cooke 1982).

Note that the stationary points depend crucially on the load speed V . Unless k = 0,
they correspond to θ = 0. In figure 1 for example, we depict the zeros of Ψk (the
two points of intersection kA, kB of the ordinate representing load speed V with the
cg-curve) when cmin < V < (gH)1/2. For all load speeds V < (gH)1/2, any stationary
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point is an interior point. For the load speed V = (gH)1/2, one stationary point
is on the boundary (at the origin) and the other is an interior point. Considering
the integration to be over the semi-infinite strip in the Cartesian (k, θ)-plane where
|θ| 6 1

2
π and k > 0, when k = 0 we have cg = (gH)1/2 so there are likewise stationary

points on the boundary of this semi-infinite strip where θ = ± cos−1[(gH)1/2/V ], for
V > (gH)1/2.

We now discuss the asymptotic contribution to the double integral in (5.1) from
the neighbourhood of these stationary points for various load speeds V , in a fashion
similar to the discussion given by Schulkes & Sneyd (1988) for the single integral in
the case of a line load, cf. also Squire et al. (1996). Note that here it is the second- or
some higher-order partial derivative in the phase function Ψ = k(c− V cos θ) that is
non-zero at the stationary point, in each case.

Case 1: Subcritical load speeds V 6 cgmin

Case 1a: V < cgmin

If the load speed V is less than cgmin, the minimum value of the group speed, then
Ψ is a monotonically increasing function of k for any θ so there are no real stationary
points. It follows that the transient deflection decays exponentially with time, hence
the steady state is approached relatively rapidly.

Case 1b: V = cgmin

When V = cgmin, there is only a single stationary point, namely a point of inflexion
relative to k, which we denote by (ks, 0). The Taylor expansion of the phase function
Ψ in (5.1) about this point is thus

Ψ (k, θ) = Ψ (ks, 0) +
Ψkkk

6
(k − ks)3 +

Ψθθk

2
θ2(k − ks) +

Ψθθ

2
θ2 + · · · (5.2)

where the partial derivatives are evaluated at the stationary point. We have that
Ψkkk(ks, 0) = (cg)kk(ks, 0) > 0, Ψθθ(ks, 0) = ksV > 0, and Ψθθk(ks, 0) = V > 0, so
introducing (5.2) into (5.1) gives

ηt(r, ξ, t)

≈ P0

4π2ρ
Im

(∫ ks+ε

ks−ε

∫ ε

−ε
C(r, ξ; ks) exp

[
−it(Ψ (ks, 0) +

(cg)kk
6

(k − ks)3 +
kV

2
θ2)

]
dθdk

)
=

P0

2π2ρ
Im

(
C(r, ξ; ks)e

−itΨ (ks,0)

∫ ∞
0

exp

[
−it

(cg)kk
6

(k − ks)3

](∫ ∞
0

exp

[
−it

V

2
kθ2

]
dθ

)
dk

)
,

(5.3)

since ε > 0 can be replaced by ∞ in the limit t → ∞ and the integrand is even in θ.
To the leading-order term, the integral can be evaluated to yield

ηt(r, ξ, t) ≈ P0

√
3

6ρ(π3ks)1/2
Γ ( 1

3
)Im

( C(r, ξ; ks)e
−iπ/4

√
2V ((cg)kk/6)1/3

e−itΨ (ks,0)

t5/6

)
. (5.4)
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We now integrate (5.4) over T < t < ∞ where T is a sufficiently large fixed time
(Olver 1974). Then after integrating by parts twice, we obtain (as t→∞)

η(r, ξ, t)− η(r, ξ,∞) ≈ P0

√
3

6ρ(π3ks)1/2
Γ ( 1

3
)Im

( C(r, ξ; ks)e
−iπ/4

√
2V ((cg)kk/6)1/3

×
[

e−itΨ (ks,0)

iΨ (ks, 0)t5/6

(
1 +

5i

6Ψ (ks, 0)t

)
− 55

36Ψ (ks, 0)2

∫ ∞
t

e−iτΨ (ks,0)

τ17/6
dτ

])
. (5.5)

For a concentrated line load at this load speed (V = cgmin), Schulkes & Sneyd
(1988) found that the most persistent transient decay is t−1/3, whereas from (5.5) we
conclude that transients due to a point load decay more quickly (as t−5/6). Thus the
deflection produced by an impulsively started concentrated point load tends rather
more rapidly to the eventual steady state, by an additional factor t−1/2.

Case 2: Subcritical load speeds cgmin < V < cmin and supercritical load speeds cmin <
V < (gH)1/2

In these two load speed regimes, the two interior stationary points are denoted
by (kA, 0) and (kB, 0), as illustrated in figure 1 for the supercritical regime cmin <
V < (gH)1/2. After expanding the integrand about the stationary points, the integral
becomes

ηt(r, ξ, t) ≈ P0

4π2ρ
Im

(∫ kA+ε

kA−ε

∫ ε

−ε
C(r, ξ; kA) exp

[
−it

(
ΨA+

Ψkk

2
(k − kA)2+

Ψθθ

2
θ2

)]
dθdk

+

∫ kB+ε

kB−ε

∫ ε

−ε
C(r, ξ; kB)exp

[
−it

(
ΨB +

Ψkk

2
(k − kB)2 +

Ψθθ

2
θ2

)]
dθdk

)
(5.6)

where the derivatives Ψkk and Ψθθ are evaluated at the stationary points. We observe
that Ψkk(kB, 0) > 0, Ψkk(kA, 0) < 0, Ψθθ(kA, 0) > 0, Ψθθ(kB, 0) > 0 (and Ψkθ = Ψθk = 0
at both kA and kB). We also write ΨA to denote Ψ (kA, 0) and ΨB to denote Ψ (kB, 0).

Further evaluation as before yields

ηt(r, ξ, t) ≈ P0

4π2ρ
Im

(
C(r, ξ; kA)e−itΨA

∫ ∞
−∞

e−S
2

√
2eiπ/4

t1/2[|Ψkk(kA, 0)|]1/2
dS

×
∫ ∞
−∞

e−U
2

√
2e−iπ/4

t1/2[Ψθθ(kA, 0)]1/2
dU

)

+
P0

4π2ρ
Im

(
C(r, ξ; kB)e−itΨB

∫ ∞
−∞

e−S
2

√
2e−iπ/4

t1/2[Ψkk(kB, 0)]1/2
dS

×
∫ ∞
−∞

e−U
2

√
2e−iπ/4

t1/2[Ψθθ(kB, 0)]1/2
dU

)

=
P0

2πρ
Im

( C(r, ξ; kA)

[|Ψkk(kA, 0)|]1/2[Ψθθ(kA, 0)]1/2

e−itΨA

t

)
− P0

2πρ
Re

( C(r, ξ; kB)

[Ψkk(kB, 0)]1/2[Ψθθ(kB, 0)]1/2

e−itΨB

t

)
. (5.7)
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We again integrate over T < t < ∞ where T is a sufficiently large fixed time, to
obtain (after integrating by parts twice)

η(r, ξ, t)− η(r, ξ,∞) ≈ P0

2πρ
Im

( C(r, ξ; kA)

[|Ψkk(kA, 0)|]1/2[Ψθθ(kA, 0)]1/2

×
[

e−itΨA

iΨAt

(
1 +

i

ΨAt

)
− 2

(ΨA)2

∫ ∞
t

e−iτΨA

τ3
dτ

])
− P0

2πρ
Re

( C(r, ξ; kB)

[Ψkk(kB, 0)]1/2[Ψθθ(kB, 0)]1/2

×
[

e−itΨB

iΨBt

(
1 +

i

ΨBt

)
− 2

(ΨB)2

∫ ∞
t

e−iτΨB

τ3
dτ

])
. (5.8)

Equation (5.8) shows that, in the two load speed regimes discussed in this section,
the transients due to a concentrated point load decay as t−1. This decay rate is again
faster by a factor t−1/2, compared with the case of a concentrated line load discussed
by Schulkes & Sneyd (1988).

Case 3: Supercritical load speeds V > (gH)1/2

When the load speed V is greater than (gH)1/2, the stationary points near the origin
are given by (0,± cos−1[(gH)1/2/V ]). The third stationary point away from the origin
is given by (kB, 0). At the stationary point (0, θs) where θs = cos−1[(gH)1/2/V ], the
non-zero derivatives up to the third order are Ψkθ = Ψθk = V sin θs, Ψkkk = (cg)kk < 0,
Ψθθk = V cos θs, so we get

ηt(r, ξ, t)

≈ P0

4π2ρ
Im

(∫ ε

0

∫ θs+ε

θs−ε
H

c(0)
k2 exp

[
−it

(
Ψkθk(θ − θs)+Ψθθk

2
k(θ − θs)2+

Ψkkk

6
k3

)]
dθdk

)
+

P0

4π2ρ
Im

(∫ ε

0

∫ −θs+ε
−θs−ε

H

c(0)
k2

× exp

[
−it

(
−Ψkθk(θ + θs) +

Ψθθk

2
k(θ + θs)

2 +
Ψkkk

6
k3

)]
dθdk

)
+

P0

4π2ρ
Im

(∫ kB+ε

kB−ε

∫ ε

−ε
C(r, ξ; kB) exp

[
−it

(
ΨB +

Ψkk

2
(k − kB)2 +

Ψθθ

2
θ2

)]
dθdk

)
.

(5.9)

In the limit t → ∞, we again replace ε > 0 by ∞, and evaluate the last integral in
(5.9) as in the previous cases. The first two integrals in (5.9) can be combined and the
inner θ integral then evaluated, so we obtain

ηt(r, ξ, t) ≈ P0

π3/2ρ
Im

(
H

c(0)

e−iπ/4

[2V cos θs]1/2t1/2

∫ ∞
0

k3/2

× exp

[
it

(
V

2
cos θs tan2 (θs)k − (cg)kk

6
k3

)]
dk

)
− P0

2πρ
Re

( C(r, ξ; kB)

[Ψkk(kB, 0)]1/2[Ψθθ(kB, 0)]1/2

e−itΨB

t

)
. (5.10)
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The integral in (5.10) can be estimated using the method of steepest descent (see
Nugroho 1997 for details). Thus we obtain

ηt(r, ξ, t) ≈ P0

2πρ

 H tan θs
c(0)|(cg)kk|

exp

[− tan3(θs)

3

(
(V cos θs)

3

|(cg)kk| t

)]1/2

t


− P0

2πρ
Re

( C(r, ξ; kB)

[Ψkk(kB, 0)]1/2[Ψθθ(kB, 0)]1/2

e−itΨB

t

)
. (5.11)

We again integrate over T < t < ∞ where T is a sufficiently large fixed time, to
obtain

η(r, ξ, t)− η(r, ξ,∞)≈ P0

2πρ

 H tan θs
c(0)[|(cg)kk|]1/2


3 exp

[
− (tan θs)

3

3

[
(V cos θs)

3

|(cg)kk|
]1/2
]

[(V cos θs)3]1/2(tan θs)3t

×
(

1− 3[|(cg)kk|]1/2

[(V cos θs)3]1/2(tan θs)3t

)

+
18|(cg)kk|

(V cos θs)3(tan θs)6

∫ ∞
t

exp

[
−2

3

[
(V cos θs)

3

4|(cg)kk|
]1/2

(tan θs)
3τ

]
τ3

dτ




− P0

2πρ
Re

( C(r, ξ; kB)

[Ψkk(kB, 0)]1/2[Ψθθ(kB, 0)]1/2

[
e−itΨB

iΨBt

(
1 +

i

ΨBt

)
− 2

(ΨB)2

∫ ∞
t

e−iτΨB

τ3
dτ

])
. (5.12)

Hence waves behind the load, which correspond to the contribution from the station-
ary points (0,±θs), disappear exponentially, i.e. much faster than the waves in front.
The contribution from the stationary point (kB, 0) defines the slower decay (as t−1)
of the transients associated with the leading shorter flexural waves. Once again, this
decay is faster by a factor t−1/2 compared with the case of a concentrated line load
discussed by Schulkes & Sneyd (1988).

Case 4: Critical load speed V = cmin

For the critical load speed V = cmin, Schulkes & Sneyd (1988) showed that the
deflection grows in time as t1/2, consistent with Kheysin (1971). For our double
integral, at this load speed there are again two interior stationary points which we
denote by (kA, 0) and (kmin, 0), where kmin is the wavenumber at cmin. SinceΨ (kmin, 0) = 0,
the Taylor expansion of the phase function Ψ (k, θ) about k = kmin is

Ψ (k, θ) =
Ψkk

2
(k − kmin)2 +

Ψθθ

2
θ2 + · · · ,
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and we note that Ψkk(kA, 0) < 0, Ψkk(kmin, 0) > 0, Ψθθ(kA, 0) > 0, Ψθθ(kmin, 0) > 0. Thus
we obtain

ηt(r, ξ, t) ≈ P0

2πρ
Im

( C(r, ξ; kA)

[|Ψkk(kA, 0)|]1/2[Ψθθ(kA, 0)]1/2

e−itΨA

t

)

− P0

2πρ
Re

( C(r, ξ; kmin)

[Ψkk(kmin, 0)]1/2[Ψθθ(kmin, 0)]1/2

1

t

)
. (5.13)

Rather than integrating from t to ∞, in this case we integrate from T to t where T
is a sufficiently large fixed time, to get

η(r, ξ, t)− η(r, ξ, T ) ≈ P0

2πρ
Im

( C(r, ξ; kA)

[|Ψkk(kA, 0)|]1/2[Ψθθ(kA, 0)]1/2

×
[

e−itΨA

iΨAt

(
1 +

i

ΨAt

)
+

e−iTΨA

iΨAT

(
1 +

i

ΨAT 2

)

− 2

(ΨA)2

∫ t

T

e−iτΨA

τ3
dτ

])
− P0

2πρ
Re

×
( C(r, ξ; kmin)

[Ψkk(kmin, 0)]1/2[Ψθθ(kmin, 0)]1/2
(ln t− lnT )

)
. (5.14)

Thus the deflection grows logarithmically in the limit t→ ∞. This is similar to the
case of a concentrated line load, in that there is no steady solution at the critical load
speed cmin (Kheysin 1971; Schulkes & Sneyd 1988), but the growth rate predicted for
the concentrated point load is O(ln t) rather than O(t1/2).

Case 5: Load speedV = (gH)1/2

As V → (gH)1/2 from below, the stationary point (kA, 0) nearer to the origin
(0, 0) approaches it along θ = 0, so in the limit (kA, 0) = (0, 0) is a boundary
stationary point. When V → (gH)1/2 from above, the two interior stationary points
[0,± cos−1 (gH)1/2/V ] merge into the origin. In passing, we recall that Schulkes &
Sneyd (1988) noted that their relevant phase function, corresponding to setting θ = 0
in our Ψ = k(c − V cos θ), has a triple zero. At the origin, in our analysis we have
that all partial derivatives of Ψ up to second order vanish and Ψkkk = (cg)kk < 0,
Ψθθθ = −kV sin θ = 0, Ψθθk = V , and Ψθkk = 0. Once again, introducing Taylor
expansions into (5.1) we obtain

ηt(r, ξ, t) ≈ P0

2π2ρ
Im

(∫ ε

0

∫ ε

0

H

c(0)
k2 exp

[
−it

(
(cg)kk

6
k3 +

V

2
kθ2

)]
dθdk

)

+
P0

4π2ρ
Im

(∫ kB+ε

kB−ε

∫ ε

−ε
C(r, ξ; kB) exp

[
−it

(
ΨB+

Ψkk

2
(k − kB)2+

Ψθθ

2
θ2

)]
dθdk

)
,

(5.15)

where each of the derivatives is evaluated at the relevant stationary point. Further
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evaluation yields

ηt(r, ξ, t) ≈ − P0

12(π3)1/2ρ

H

c(0)

(
6

|(cg)kk|
)5/6 Γ ( 5

6
)

(2V )1/2

1

t4/3

− P0

2πρ
Re

( C(r, ξ; kB)

[Ψkk(kB, 0)]1/2[Ψθθ(kB, 0)]1/2

e−itΨB

t

)
.

We again integrate over T < t < ∞ for sufficiently large fixed T , to obtain (as t→∞)

η(r, ξ, t)− η(r, ξ,∞) ≈ P0

4(π3)1/2ρ

H

c(0)

(
6

|(cg)kk|
)5/6 Γ ( 5

6
)

(2V )1/2

1

t1/3

− P0

2πρ
Re

( C(r, ξ; kB)

[Ψkk(kB, 0)]1/2[Ψθθ(kB, 0)]1/2

×
[

e−itΨB

iΨBt

(
1 +

i

ΨBt

)
− 2

(ΨB)2

∫ ∞
t

e−iτΨB

τ3
dτ

])
. (5.16)

The transient due to the stationary point (0, 0) decays as t−1/3, whereas that due
to the stationary point (kB, 0) decays more quickly (as t−1). This behaviour is in
contrast to that for load speed V = (gH)1/2 in the case of a concentrated line load,
where Schulkes & Sneyd (1988) found that the deflection grows as t1/3. A growing
deflection has not been observed when V = (gH)1/2 (see Takizawa 1985; Squire et
al. 1985); and Schulkes & Sneyd (1988) noted ‘It is possible that V = (gH)1/2 does
not represent a critical speed for two-dimensional sources, because wave energy could
radiate in all directions – not just along the line of motion’. Our result shows that
the time-dependent response is transient for a concentrated point load, so that the
eventual deflection at V = (gH)1/2 is steady state. This is consistent with Milinazzo
et al. (1995), who found that the deflection due to a uniformly moving distributed
rectangular load is finite at the load speed (gH)1/2.

6. Large-time asymptotic analysis for the distributed circular load
The time-dependent response under the centre of a uniformly distributed circular

load is clarified by introducing the dimensionless time t∗ = kV t, so that for the inner
integral of (4.1) we have∫ t∗

0

J0(s) sin(λs)ds =
1

π

∫ t∗

0

∫ π

0

cos(s sinθ)dθ sin(λs)ds

= Re

(
1

2π

∫ π

−π
1− eit∗(λ−sinθ)

λ− sinθ
dθ

)
(6.1)

where λ = c(k)/V . Noting that∫ π

−π
1

λ− sinθ
dθ =

{
2π/(λ2 − 1)1/2, λ2 > 1

0, λ2 6 1

and returning to the original notation of (4.1), as t→∞ we therefore have∫ t

0

J0(kVs) sin (kcs)ds ≈ U(c− V )

[k2(c2 − V 2)]1/2
−Re

{
1

[2πkV t]1/2

e−i[k(c−V )t+π/4]

k(c− V )

}
(6.2)
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for all wavenumbers k except the one or two values where c(k) = V (see figure 1).
Substituting into (4.1), the time-independent component on the right-hand side of (6.2)
produces the result (4.2) due to Nevel (1970) outlined in § 4. The time-dependent com-
ponent on the right-hand side of (6.2) corresponds to the dominant time-dependent
contribution (as t → ∞) to the integral on the right-hand side of (6.1), arising from
the neighbourhood of the point of stationary phase where cos θ = 0 (i.e. θ = π/2).
Thus from (4.1) we have the dominant time-dependent contribution to the deflection
(as t→ ∞), supplementing the evolved (t = ∞) solution (4.2) due to Nevel (1970), in
the form

η̃(t) =
P0

ρR

1

[2π3Vt]1/2
Re

∫ ∞
0

tanh(kH)J1(kR)

k1/2c(k)

e−i[k(c−V )t+π/4]

k(c− V )
dk. (6.3)

The integral in (6.3) resembles the integral I1 analysed by Schulkes & Sneyd (1988)
for a line load, except that the range of integration is (0,∞) and the integrand has
additional entries that are unimportant asymptotically, namely k−1/2 and the Bessel
function J1(kR) corresponding to the uniformly distributed circular load of radius
R. Accordingly, the transients they found in the vicinity of a one-dimensional line
load are moderated by the factor t−1/2 outside the integral in (6.3). Thus we find the
transient decay rates produced by the distributed load precisely the same as for the
concentrated point load given in the previous section, for the respective subcritical and
supercritical load speed regimes, namely enhanced exponential decay if V < cgmin, but
O(t−5/6) decay if V = cgmin; and O(t−1) decay if cgmin < V < cmin or cmin < V < (gH)1/2

or V > (gH)1/2. Consequently, the deflection produced by an impulsively started
uniformly distributed circular load likewise tends rather more rapidly to the evolved
steady state (in this case Nevel’s solution) due to the factor t−1/2, in comparison with
the transients in these regimes for a concentrated line load discussed by Schulkes &
Sneyd (1988).

Recall that for cmin < V < (gH)1/2 there are two points of stationary phase
k = kA, kB (0 < kA < kB) for the integral in (6.3), as illustrated in figure 1, where
the wave group speed coincides with the load speed (cg = V ). The dominant time-
dependent contribution is produced in the neighbourhood of kA for the upper limiting
speed (gH)1/2, and in the neighbourhood of kB for the lower limiting speed cmin, the
critical minimum phase speed of the hybrid waves. At these two load speeds, (gH)1/2

and cmin, it is notable that the phase speed coincides with the group speed (c = cg),
so the points of stationary phase (at k = 0 and k = kmin respectively) occur precisely
where (6.2) and (6.3) are not valid.

Our previous analytical approach was to first investigate the asymptotic behaviour
(as t→∞) of the time-derivative of the deflection and then deduce the corresponding
asymptotic behaviour of the time-dependent component of the deflection. Thus from
(4.1) we have the exact time-derivative

η′(t) = − P0

πρR

∫ ∞
0

tanh(kH)J1(kR)

c(k)
J0(kV t) sin(kct)dk; (6.4)

so invoking the well-known asymptotic form

J0(x) ≈
(

2

πx

)1/2

cos(x− π/4), x→∞, (6.5)

for the Bessel function, we may first consider the behaviour of the asymptotic form
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for the time-derivative (as t→∞)

η′(t) = − P0

ρR

1

(2π3Vt)1/2

∫ ∞
0

tanh(kH)J1(kR)

k1/2c(k)
sin[k(c− V )t+ π/4]dk, (6.6)

rather than the asymptotic form for the deflection η̂(t) given by (6.3). In passing, we
note that the asymptotic form in (6.6) also follows by differentiating the asymptotic
form in (6.3), and it is an analytical advantage that the integral in (6.6) is regular at
both critical load speeds [cmin and (gH)1/2].

When the load speed V approaches the water wave speed (gH)1/2 from below
(V → (gH)1/2−), the dominant contribution to the integral in (6.3) arises in the
decreasing small but finite interval (0, kA), since the origin is then the limiting value of
the first point of stationary phase kA. In particular, on neglecting the plate acceleration
term the dispersion equation for propagated waves is (cf. Schulkes & Sneyd 1988;
Squire et al. 1996)

c(k) =

[(
Dk2

ρ
+ g

)
1

k
tanh(kH)

]1/2

≈ (gH)1/2

(
1− k2H2

6
+ · · ·

)
, (6.7)

so we have

c(k)− V ≈ −k
2H2

6
V .

Hence when the load speed approaches the water wave speed from below [V →
(gH)1/2−], from (6.6) we find η′(t) = O(t−4/3) as t→∞, so that η̃(t) = O(t−1/3) as
t→∞. Thus we find transients that eventually die away relatively slowly at the centre
of a uniformly distributed circular load, in contrast to the O(t1/3) growth in the
deflection found by Schulkes & Sneyd (1988) for an impulsively started line load. Of
greater interest is the case of time-dependence at the critical load speed V = cmin, the
minimum phase speed of propagated waves. In this case we write

c(k) = cmin + 1
2
c′′(kmin)(k − kmin)2 + · · · ,

where kmin denotes the wave number corresponding to the minimum phase speed cmin
of generated waves. Thus as the load speed approaches this minimum phase speed
from above (V→cmin+), the dominant contribution to the integral in (6.6) arises in
a decreasing but significant small interval (kmin, kB), where kB is the second point of
stationary phase. We therefore find η′(t) = O(t−1), so that η(t) = O(ln t) as t→∞. Thus
the deflection due to an impulsively started uniform circular load eventually grows
logarithmically with time, as we found for the impulsively started concentrated point
load, in contrast with the O(t1/2) growth as t→∞ found by Schulkes & Sneyd (1988)
for an impulsively started line load.

We can also evaluate the asymptotic time-dependent response (as t → ∞) directly
from (4.1). Thus first exchanging the order of the integration and then introducing
the asymptotic form (6.5) for the Bessel function, we get

η(t) = − P0

πρR

∫ t

0

∫ ∞
0

tanh(kH)J1(kR)

c(k)
J0(kVs) sin(kcs)dkds

≈ η(T )− P0

(2π3VR)1/2

∫ t

T

1

s1/2

∫ ∞
0

tanh(kH)J1(kR)

k1/2 c(k)

× (sin[k(c− V )s+ π/4] + sin[k(c+ V )s− π/4]
)

dkds (6.8)

for sufficiently large fixed T > 0. Consequently, we consider the stationary points for
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the integral

I(s) = Im

(∫ ∞
0

tanh(kH)J1(kR)

k1/2c(k)
e−ik(c−V )sdk

)
. (6.9)

Thus, when V → (gH)1/2 from below and recalling (6.7), we have integral (6.9)
represented asymptotically by∫ ε

0

HR

2V
k3/2eiH2Vk3s/6dk = O(s−5/6), (6.10)

and hence the transient component of the deflection in (6.8) is

O

(∫ t

T

1

s1/2
s−5/6ds

)
= O(t−1/3) (6.11)

as before. In the neighbourhood of k = kmin, a similar asymptotic evaluation of
integral (6.9) produces a result of O(s−1/2), so that the growth rate as V → cmin from
above is confirmed as

O

(∫ t

T

1

s1/2
s−1/2ds

)
= O(ln t). (6.12)

A similar analysis based upon (3.8) can be made for the concentrated point load,
serving to emphasize that load concentration does not affect the time-dependence of
the deflection underneath the centre of the load, and that this time-dependence is to
be seen at any field position where the disturbance is measurable.

7. Numerical computation
To support the asymptotic results obtained in the previous sections, the double

integral for the ice deflection η in (3.6) was evaluated numerically using the fast
Fourier transform (FFT), with from 512 to 4096 points in each direction. At the
largest values of t, in some cases it was necessary to use the greatest resolution in
order to obtain acceptable results. In figure 2(a) the effect on the numerical results
of increasing the resolution from 512 × 512 to 2048 × 2048 can be seen. The curves
η(18, 18, t) obtained using the FFT become smoother as the resolution increases. The
curve corresponding to the 2048 × 2048 grid is smooth up to about t = 170.

Since the asymptotic estimates for η are obtained by integrating ηt with respect to
t, it is necessary to account for the constant that comes from the integration before
a comparison with the numerical results can be made. This is achieved by adding
a vertical offset to the asymptotic estimate so that the asymptotic and numerical
estimates agree at a fixed point in time. The offset thus corresponds to the prior or
steady-state solution and as such depends on (X, y).

Figure 2(a–e) compares the numerical and asymptotic estimates of the values of
η(X, y, t) for various values of (X, y). The parameter values are taken from Takizawa
(1985). The particular points (X, y) chosen have no special significance – the behaviour
of the ice deflection at these points is representative (either ahead of or behind the
load). In all cases, the agreement is very good.

Figure 3(a–c) shows the evolution of the centreline profile of the ice deflection
(i.e. along the line of motion of the load), for V = 5.5, 7.0, and 9.0 m s−1. These figures
are oriented as in figure 3 of Takizawa (1985) – i.e. negative distance to the left
corresponds to ahead of the load, and positive distance to the right corresponds to
behind the load. We note that for V = 5.5 and 7.0 m s−1 the transients have largely
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Figure 2. Deflection at various field points and load speeds: (a) ahead of the load at
X = 18.0 m and y = 18.0 m and subcritical load speed V = 5.5 m s−1; (b) behind the load
at X = −18.0 m and y = 18.0 m and supercritical speed V = 7.0 m s−1; (c) directly behind
the load at X = −50.0 m and y = 0.0 m and the supercritical load speed V = 7.0 m s−1;
(d) directly behind the load at X = −18.0 m and y = 0.0 m and at the critical load speed V = 6.2
m s−1 (cmin); (e) X = 18.0 m and y = 0.0 m at the load speed (gH)1/2. The results obtained using
the fast Fourier transform are shown as the solid curves (512× 512 grid to 2048× 2048 grid in a,
1024× 1024 in b, 2048× 2048 in c, d and 4096× 4096 in e), whereas the result obtained using the
asymptotic approximation is shown as the dashed curve (equation (5.8) in a–c, (5.14) in d and (5.16)
in e). The other parameters are D = 2.5× 105, ν = 1

3
, h = 0.175 m, H = 6.8 m, g = 9.8 m s−2.
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Figure 3. An illustration of the evolution of the centreline profile of the ice deflection for 0 6 t 6 30 s
and (a) V = 5.5 m s−1, (b) V = 7.0 m s−1, (c) V = 9.0 m s−1. The results were obtained using the fast
Fourier transform (2048× 2048 grid). The other parameters are D = 2.5× 105, ν = 1

3
, h = 0.175 m,

H = 6.8 m, g = 9.8 m s−2.
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disappeared by about t = 20, and for V = 9.0 m s−1 the transients decay much more
slowly.

8. Comparison with experiment
Squire et al. (1985) and Takizawa (1985) give experimental results that can be

compared to the predictions made by the theory presented in this article. However,
since the analytic results given in § 5 are for large time, it is necessary to make the
comparison with results obtained by integrating (3.6) numerically.

In the experiments of Takizawa (1985), the amplification factor, defined to be
the ratio of the maximum deflection at V = cmin to that at V = 0, is found to
be approximately 3. In those experiments, the vehicle travelled about 100 m at the
speed V = cmin before reaching the observation point. Assuming an instantaneous
acceleration to the final speed, this corresponds to a travel time of 16.6 s. At
t = 16.6 s, we compute an amplification factor of about 2.7. At t = 30 s, we compute
an amplification factor of 3. It should be noted that for a point load moving steadily at
speeds near cmin, Milinazzo et al. (1985) found an amplification value of approximately
3. For an impulsively started line load, Schulkes & Sneyd (1988) obtain a value of
6.6.

In addition, Takizawa (1985) observed that the position of the maximum depression
lagged the position of the source. At t = 16.6 s we find that the lag is about 0.8 m
for V = cmin and 4 m for V = 8. In addition, we see that the lag increases rapidly
with source speed for V > cmin. The corresponding observed experimental values are
3 m and 5 m respectively. For an impulsively started line load, Schulkes & Sneyd
(1988) obtain values of one eighth of a wavelength for V = cmin and one quarter of
a wavelength for V > cmin. This translates to lags of between 2 and 3.5 m for the
conditions that correspond to the experiments of Takizawa (1985).

Squire et al. (1985) measure an amplification of the ice stress, defined to be the
ratio of the maximum stress at V = cmin to that at V = 0, to be between 2.24 and
2.29 for sea ice and about 1.5 for lake ice. In that experiment the travel time was
32 s. Since the strain due to a point load is singular at the origin, for the purpose
of comparison with experiment we replaced the point load with a load distributed
on a rectangle of half-length a and half-width b. The values of a and b were varied
from 1.5 m to 3 m and 1.25 m to 2.5 m respectively. The computed amplifications are
approximately 1 for lake ice and between 1.6 and 2 for sea ice. For an impulsively
started line load, Schulkes & Sneyd (1988) give a value of about 5.

9. Conclusions
The steady-state deflection, caused by either a concentrated point load or a uni-

formly distributed circular load moving over a flexible floating plate, is generally
reached more quickly in all load speed regimes than the time-dependent theory for a
concentrated line load suggested. In the subcritical load speed regime cgmin 6 V < cmin,
and in the supercritical load speed regimes cmin < V < (gH)1/2 and V > (gH)1/2,
the transient responses decay faster by a factor t−1/2. Furthermore, a concentrated
point load or a uniformly distributed circular load travelling at the critical speed cmin
produces a deflection that grows logarithmically with time (namely O(ln t) rather than
O(t1/2) as t→∞); but when travelling at the shallow water wave speed (gH)1/2, there
is a transient response that decays relatively slowly [namely O(t−1/3)]. All of these
conclusions are independent of direction or distance from the load.
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